Comparative Study on Solving Fractional Differential Equations via Shifted Jacobi Collocation Method
نویسندگان
چکیده
In this paper, operational matrices of Riemann-Liouville fractional integration and Caputo fractional differentiation for shifted Jacobi polynomials are considered. Using the given initial conditions, we transform the fractional differential equation (FDE) into a modified fractional differential equation with zero initial conditions. Next, all the existing functions in modified differential equation are approximated by shifted Jacobi polynomials. Then, operational matrices and spectral collocation method are applied to obtain a linear or nonlinear system of algebraic equations. System of algebraic equations can be simultaneously solved (e.g. using MathematicaTM ). Main characteristic behind of the this technique is that only a small number of shifted Jacobi polynomials is needed to obtain a satisfactory result which demonstrates the validity and efficiency of the method. Comparison between this method and some other methods confirm the good performance of the presented method. Also, this method is generalized for the multi-point fractional differential equation.
منابع مشابه
Comparative study on solving fractional differential equations via shifted Jacobi collocation method
In this paper, operational matrices of Riemann-Liouville fractional integration and Caputo fractional differentiation for shifted Jacobi polynomials are considered. Using the given initial conditions, we transform the fractional differential equation (FDE) into a modified fractional differential equation with zero initial conditions. Next, all the existing functions in modified differential equ...
متن کاملPresentation of two models for the numerical analysis of fractional integro-differential equations and their comparison
In this paper, we exhibit two methods to numerically solve the fractional integro differential equations and then proceed to compare the results of their applications on different problems. For this purpose, at first shifted Jacobi polynomials are introduced and then operational matrices of the shifted Jacobi polynomials are stated. Then these equations are solved by two methods: Caputo fractio...
متن کاملJacobi Operational Matrix Approach for Solving Systems of Linear and Nonlinear Integro-Differential Equations
This paper aims to construct a general formulation for the shifted Jacobi operational matrices of integration and product. The main aim is to generalize the Jacobi integral and product operational matrices to the solving system of Fredholm and Volterra integro--differential equations which appear in various fields of science such as physics and engineering. The Operational matr...
متن کاملA shifted Jacobi-Gauss-Lobatto collocation method for solving nonlinear fractional Langevin equation involving two fractional orders in different intervals
In this paper, we develop a Jacobi-Gauss-Lobatto collocation method for solving the nonlinear fractional Langevin equation with three-point boundary conditions. The fractional derivative is described in the Caputo sense. The shifted Jacobi-Gauss-Lobatto points are used as collocation nodes. The main characteristic behind the Jacobi-Gauss-Lobatto collocation approach is that it reduces such a pr...
متن کاملUsing shifted Legendre scaling functions for solving fractional biochemical reaction problem
In this paper, biochemical reaction problem is given in the form of a system of non-linear differential equations involving Caputo fractional derivative. The aim is to suggest an instrumental scheme to approximate the solution of this problem. To achieve this goal, the fractional derivation terms are expanded as the elements of shifted Legendre scaling functions. Then, applying operational matr...
متن کامل